
J.  CHEM. SOC., CHEM. COMMUN., 1987 1171 

Stereocontrolled Route to 3-Amino-2,3,6-trideoxy-hexopyranoses. K- I  0 
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A stereoselective synthesis of methyl (or benzyl) 3-azido-2,3,6-trideoxy-a-~-arabino-hexopyranoside f rom di-0-acetyl- 
L-rhamnal is reported; it proceeds via addition of  hydrazoic acid to  a hex-2-enopyranose, followed by acetylation 
and glycosidation with the appropriate alcohol, in the presence of K-10 montmorillonite as catalyst. 

L-Acosamine (3-amino-2,3,6-trideoxy-~-arabino-hexopyran- 
ose) is the amino sugar component of the vancomycin-type 
antibiotic, actinoidin. 1 Biological studies on semi-synthetic 
anthracycline antibiotic analogues have shown that the 
replacement of L-daunosamine (3-amino-2,3,6-trideoxy-~- 
Zyxo-hexopyranose) by its L-arabino isomer (L-acosamine) 
leads to second generation drugs, 4’-epi-daunorubicin and 
4’-epi-doxorubicin,* which display significant antitumour 
activity and lower toxicity than the parent compounds. The 
great interest in L-acosamine results also from the fact that it 
has often been used as an intermediate in the synthesis of 
L-daunosamine .3 

Literature data have shown that conjugate addition of HN3 
in acetic acid and water, at room temperature, to an 

a,P-unsaturated carbonyl system such as hex-3-enopyranosid- 
2-dose4 or hex-2-enopyranosid-4-ulose5 gives stereoselec- 
tively , under conditions of thermodynamic control, products 
having the azido group equatorially oriented. However, to our 
knowledge there are no examples of 1,4-addition to hex-2- 
enopyranoses, although these can be formally considered as 
a$-unsaturated aldehydes and could provide under ther- 
modynamic control 3-azido sugars of L-arabino configuration. 
Therefore addition of HN3 to 4-0-acetyl-6-deoxy-~-erythro- 
hex-2-enopyranose (2) was attempted. 

To this end, 1,5-anhydr0-3,4-di-O-acetyl-~-arabino-hex-l- 
enitol (di-0-acetyl-L-rhamnal) (1) was first converted in 80% 
yield into the hex-2-enopyranose (2) by simple heating in the 
presence of water.6 Treatment of (2) with sodium azide in 
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Scheme 1. Reagents: i, H 2 0 ,  80°C, 2 h; ii, H 2 0 ,  AcOH, NaN,, 24 h; 
iii, CH2C12, C5H5N, A c 2 0 ,  18 h; iv, R O H ,  Klo montmorillonite, 
reflux, 24 h. 

glacial acetic acid and water with stirring for 24 h gave (3) in 
95% yield. Moreover, when these two reactions were per- 
formed without isolation of the intermediate (2), the overall 
yield was increased from 76 to 90%. Conventional acetylation 
of (3) with pyridine-acetic anhydride led quantitatively to the 
l-O-acetyl hexose (4).t. 

In the 2,6-dideoxy-hexose series, we have previously 
reported that glycosidation of l-O-acetyl-3-trifluoroacetam- 
ido or 1,3-di-O-acetyl derivatives with alcohols7 or daunomy- 
h o n e 8  can be performed in the presence of toluene-p- 
sulphonic acid as catalyst. On the other hand, a recent 
publication9 has shown that tetrahydropyranylation of alco- 
hols or phenols can be achieved cleanly by K-10 montmorillo- 
nite, an inexpensive catalyst. Moreover, since the reaction 
conditions are extremely mild and the work-up involves only 
filtration before evaporation of the solvent, use of this catalyst 
rather than p-MeC6H4S03H was attempted to effect glycosi- 
dation of the l-O-acetyl hexoses (4). Thus, (4) was refluxed in 
anhydrous benzene in the presence of K-10 montmorillonite 
and of an excess of alcohol (ca. 10-20 mol. equiv.) 
(PhCH20H or MeOH). This led stereoselectively, after 24 h, 
to the benzyl acosamide ( 5 )  (syrup, [a]D2' -10") or to the 
methyl acosamide (6) (syrup, [a]D2' - 171"), easily isolated by 
column chromatography (hexane-EtOAc 5 : 1 and 8 : 1, 
respectively) as less polar and major components respectively 
(44 and 48% yields). Further elution afforded successively the 
corresponding P-L-rib0 (8%, syrup, [a]D20 - 19"), P-L-urubino 

isomers in the case of the benzyl glycosides; in the case of the 
methyl glycosides, although the corresponding B-L-ribo pro- 

 YO, Syrup, [CX]D~O +70"), and cu-L-ribo (3.5%, [ a ] ~ ~ '  -186") 

t Except for compounds (3) and (4), obtained as a mixture of a- and 
P-L-rib0 and arabino isomers, characterisation data, including micro- 
analyses, mass spectra and IH n.m.r., are in excellent agreement with 
the proposed structures for new compounds. Values of [a],,*O were 
measured in chloroform solution (c  l),  except where indicated. 

Scheme 2. Reagents: i, NaOMe, MeOH; ii, Et3N, EtOH, PdIC 

duct (lo%, [cuID20 -41") could be isolated, the azido sugars of 
P-L-urubino and a-L-ribo configuration (overall yield ca. 6%) 
could not be separated. 

Transformation of the 4-0-acetyl-3-azido-2,3,6-trideoxy-a- 
L-arubino-hexopyranosides ( 5 )  or (6) into the corresponding 
benzyl acosaminide (9) (m.p. 114-115 "C; [aID -108" (c  1 in 
MeOH) or methyl acosaminide ( 1 0 ) 1 O b ~ . e $  was achieved in 
nearly quantitative yield in two steps by transesterification 
with MeONa-MeOH, giving (7) (syrup, [&ID2' -99") or (8),1° 
followed by catalytic hydrogenation in MeOH and in the 
presence of 10% palladium-charcoal and triethylamine. 

In conclusion, this new and highly stereoselective route 
affords benzyl or methyl acosaminide in five steps from 
di-O-acetyl-L-rhamnal (35% overall yield). Since methyl 
acosaminide has been previously transformed100 into the 
corresponding methyl daunosaminide, this also formally 
constitutes a new route to daunosamine. 
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